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A variational formulation of boundary-value problems of the non-linear dynamic theory of elasticity using the Hamilton functional 
is presented. The quasi-static boundary-value problem for thin plates is considered. The initial system of equations, in a two- 
dimensional formulation, is represented in terms of generalized forces and displacements. The sufficient conditions for the existence 
and uniqueness of a weak solution are established. © 2004 Elsevier Ltd. All rights reserved. 

1. T H E  V A R I A T I O N A L  F O R M U L A T I O N  O F  B O U N D A R Y - V A L U E  
P R O B L E M S  O F  T H E  N O N - L I N E A R  T H E O R Y  O F  

E L A S T I C I T Y  

We will consider an elastically deformed isotropic solid body K*. In the initial configuration the body 
is unloaded and, in Euclidean space, it uniformly fills the region X0, bounded by the surface OX0. The 
position of an arbitrary point k e K* in the initial configuration (x < Xl) is characterized by the radius 
vector r0. In the time interval [% "c2] the body is acted upon by surface and body forces and, in the 
actual configuration (Xa < z < ~2), occupies the region X u bX. The position of a point k ~ K* at an 
arbitrary instant of time (xt < z < "172) is defined by the radius vector r = r(r0, z). 

In the variational formulation of the mathematical model of the non-linear theory of elasticity we 
take as the initial functional the Hamilton functional 

T 2 

VoOu, , :  v0ou,,  

Xo 

u ,0)>o s < 
igx o 

(1.1) 

where H = H(p, Vo ® u) 1s the Hamdton function, p = fzl(Vo • d + fo)d~ is the force momentum density 
vector, d is the Piola-Kirchhoff stress tensor of the first kind, tr~ + -- tr+(ro, z) is the vector of the surface 
forces, fo = fo(ro, "~) is the vector of the mass-force density acting in the region Xo, u = r - ro is the 
vector of the displacement of a point of the body from the initial configuration to the actualconfiguration, 
v = Ou/0x is the velocity vector, V 0 -- ~/0r 0 is the Hamilton operator, V 0 ® u -- Vo ® r - L Vo ® r is the 
tensor of the gradient of the location, I is the unit tensor, u~2)(ro) = u(ro, x2) is the specified field of the 
displacement vector at the instant of time x2 and p(2)(ro) -= p(ro, ~2)- 

Here and henceforth all the additive parameters of the physically small region 8K C K* are 
normalized with respect to the geometrical parameters 8Vo, 8~0 of this region in the initial state• In 
particular 

+ +,dY.* f, dV* 
8H = HSVo, ~iP = p~SVo, ¢t~ = o,, dY.o, fo = dV ° 
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+* f ,  where H and p are the densities of the additive parameters 8H and ;SP, ~r, and are the vectors of 
the surface forces and mass forces in the actual configuration dV*, and dE* are the geometrical 
parameters of a physically small region in the actual configuration. 

The necessary condition for a minimum of the Hamilton functional is that its first variation 

8F[u ,  V o ® u, p] = 

"g2 

= ~-~ - • ~Sp + b ( V - ~  u)  
¢l Xo 

~)" " ~(Vo ®u)r]dvo + f (~n-~+n) " ~ud~o}d'g 
Ox o (1.2) 

+ j" [(u(2) - U~2)) " ~P(2) - U(1)" ~P(1)]dVo = 0 
Xo 

should be equal to zero. 
From the fact that the variations ~Su, 6(V0 ® u) r, 6p are independent we obtain the following governing 

relations of the model 

~H 3H 
u = ~,t,5-~----v(P'V°@u)' 0 = /3Vo@u-C3(P, Vo®u),  roe  X o (1.3) 

~ . - - - n . 0  = e¢. +, r o ~ O x  0 (1.4) 

ut*=*2 = u~) ,  r 0 ~ X  0 (1.5) 

It follows from relations (1.3) that the Hamilton function H(p, V0 ® u) is a function of the local state, 
Eqs (1.3)-(1.5) are the governing equations of the model, and, correspondingly, the differential 1-form 

d H  = u .  d p  + 0 .. d(V 0 ® u) r (1.6) 

will be a total differential. 
The sufficient condition for a minimum of the Hamilton functional (1.1) is the condition of its convexity 

'g2 

~2e=![!o~n'~ud~°ld"~+f[~u(2"~P(2)-~U(l"'P(l']dV°>O~ J Xo ( 1 . 7 )  

which can be converted to the form 

'U 2 

"~ t X o 
"g2 

= ~ ~ { 52H + 2(Vo • ~0) • ~Su}~SVod~ > 0 

' tiXo 

We take as the sufficient conditions for convexity, in particular, the conditions 

'g2 ~2 

f f~)2U(p, Vo~ l l )dVo  dT,>O, ~ ( V o ' ~ ) ' ~ u d V o d T , > - O  
'~l Xo '~l xo 

(1.8) 

Relations (1.3)-(1.5) and (1.8) constitute the complete system of equations of the dynamic processes 
in elastic bodies. 

To obtain the equations of motion, written in terms of the displacement vector, in functional (1.1) 
we must change from the Hamilton function H(p, V0 ® u) to the Lagrange function by a Legendre 
transformation [1] 
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L = o . p - H  (1.9) 

The sufficient condition for the function L = L(v, V0 ® u) to exist is the satisfaction of the Legendre 
condition, which is equivalent to the condition 

. _ _ .  0 v  . . )  I (00") I ( 0 0  01) •_ __  

where 13 is the third algebraic invariant of the tensor Ov/Op. 
The differential 1-form for the function L can be represented in the form 

dL = p . d o - O . . d ( V  o@u) r 

The function L is the function of state, specified in the phase space of the parameters v, V0 ® u. 
The conjugate to them will be the generalized forces p and t~, for which the following governing equations 
of state hold 

OL 0L 
p = ~-~-ffip(v, Vo@u), 0 = 0Vo@u--0(v, Vo@u) (1.10) 

The Hamilton functional (1.1), after changing to the Lagrange function, can be written in the form 

F*[u, V o ® u, v, P(2)] = 

%2 

!{!oC • } = P ' v - L ( v ' V ° ® u ) + u "  dV°- I ~n'udZ° dx- 
aXo (1.11) 

- f u~).p(2)dV0 
Xo 

For the variation of this functional, taking into account the equations of state (1.10), we obtain 

'~2 

8F*Iu, p(2 )1 = ~ -  o-Vo'O "SudVo+ j'(on-~n+).SudZo dx+ 
"i ~o o3Xo 

4- J" [ (11(2  ) --  U~2))  • 8p(2) - u ( 1  ) • 8p(1)]dV o 
Xo 

(1.12) 

By equating to zero the variation of the functional F*, as a necessary condition for an extremum, we 
obtain the equations of the locally formulated boundary-value problem in displacements 

V o • 0(~-~, V o ® u ) + f  ° = ~[,P[,~'0( (0u Vo @ u) / (1.13) 

onlox ° = O'~ +, ul,  ffix ' = 0, ulxffi, ~ = u~2 ) (1.14) 

For the Hamilton function we assume that 

H(p, V o ® u) = W(p) + Uo(V o ® u) 
1 8m ,SV* p, 8m 

W(p) = ~-~p.p. p = ~ 0  = p ~ 0 '  = 8V* 

where p is the density, i.e. the mass 8m of a physically small element, referred to its volume 8V0 in the 
initial state; in the linear approximation 9.  = 9(1 - e), e = V0 • u. 
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The Lagrange function and the equations of state will then take the form 

L(la, V o ® u  ) = 2~V • V - U o ( V o ® u )  

~Uo(Vo ® u) 
= = - ~ ( V  o ® u) p pu ,  t~ ~ V o @  u 

Equation (1.3) can then be written in the form 

V o • 0 + fo = P~-~ (1.15) 

For elastic isotropic materials the deformation potential energy density U01is a function of seven 
independent scalar invariants of the tensors d = ½ (V0 ® u + u ® V0) and d = ~- (V0 @ u - u ® V0) [2] 

Uo = Uo(I(~), i(~2), i(~2), i(~3), i(~2. ~), i(~2. ~2), i(~2.  ~. ~.. ~2)) _ 

--- Uo(AI, A2 . . . . .  A 7) 
(1.16) 

where 

~i. ~j = ~ - . ~ . . . . . ~ .  ~ . ~ . . . . . ~ ,  
* Y 
i J 

where I(.) is the trace of the second-rank tensor. 
Taking formulae (1.16) into account, we can write the equation of state for the stress tensor of the 

non-linear theory of elasticity 

3 U 0 ~ U 0 bA i ( j =  = 
c)(V 0 ® U) ~ A  i t)(V 0 ® U) 

2. THE QUASI -STATIC F O R M U L A T I O N  OF B O U N D A R Y - V A L U E  
P R O B L E M S  FOR THIN PLATES.  E X I S T E N C E  AND 

U N I Q U E N E S S  C O N D I T I O N S  

Suppose the elastic body is a thin plate of limited dimensions. In the initial state the plate is characterized 
by the middle surface 3X~ and the thickness 2h. The position of an arbitrary point of the plate is defined 
by the radius vector ro = to, + r03, where ro, is the radius vector of points in the middle surface of the 
plate (~3 = 0); 1"03 = ~3 ~ 3 is the vector of the position of points along the normal to the middle surface 
(~3 ~ [-h, h]) and 3 3 is the unit vector in the direction of the normal to the middle surface. 

For quasi-static loading 

f r0dV0 + f o.+~o = 0 
Xo ~Xo 

boundary-value problem (1.15), (1.14) consists of the equation of equilibrium and the boundary condition 
on the surface ~X0 

V o ' O + f o  = O, o n l a x  ° = (r+~ (2.1) 

Here the Hamilton functional (1.1) is identical with the Lagrange functional 

 Lu] ; IL.o Vo*U)-fo.U]dVo- I 
X o ~X o 

(2.2) 
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The sufficient conditions for convexity of the functional (2.2) are similar to conditions (1.8) and can 
be written in the form 

[   Vo(Vo ® u)dVo > O, j'(%.  .dVo >- 0 (2.3) 
Xo Xo 

To investigate the first condition of (2.3) we will use expression (1.16) for the potential U0 as a function 
of the scalar invariance of the tensors ~ and k. In this case the first Gateaux differential of the functional 
J[u] in the direction of the vector ~o can be written as follows: 

r V~)Uo(AI . . . . .  A7)(  d . . . .  

.f+ - a . . ~ 0 d ' Z  0, 0 e  ( 0 , 1 ) ,  i = 1 . . . . .  7 

3 X  0 

= o - fo" q~ldVo - 

(2.4) 

Here and henceforth summation is carried out over repeated subscripts. 
The second Gg~teaux differential in the directions ~# and 0 when ~ = ~o can be represented in the 

form 

J"(u, ~, ~) -- , 5-~--~;4- t N  A : v o  ® u + 0V o ® ~) + 
XO L- 0 = 0  

~U0(A1 . . . . .  A7) ~ ( f  d - 

,. t /~2Uo :btambtPA .. 
× (~AJ(V°  ® u "  TV° ® ~ ' )  , = 0 a V o - - ~ o ~ t - ~ : a v °  

m. Ou,, ts Ou~ 0, Te (0,1); m,n , t , s  = 1,2,3; i , j  = 1 . . . . .  7; q ~m '  q 0~t 

(2.5) 

Hence, by expression (2.5) the local sufficient condition for convexity of the functional is that the 
following quadratic form should be positive definite 

:Go o 
~qmn~qtS \~n  ~ s j  , V ~  e V; m, n, t, s = 1, 2, 3 (2.6) 

According to Sylvester's criterion the sign definiteness of the quadratic form of inequality (2.6) is 
equivalent to the condition that all nine principal minors A1, . . . ,  A9 of quadratic form (2.6) should be 
positive. 

We will assume that, in the range of variation of the external load considered, the second condition 
of (2.3) is satisfied. In this case the following theorem of the existence and uniqueness of a minimum 
of the functional J[u] holds [3, 4]. 

Theorem 1. Suppose Yis a weakly closed subspace of a reflexive Banach space W, while the functional 
J[u] is twice continuously G&teaux differentiable. Then 

A. If, for all u, q~ e Y the first G&teaux differential J '[u, ~o] of the functional J[u] in the direction 
is linear and continuous with respect to ~o, while the second G&teaux differential J"[u, ~, ~] satisfies 
the condition J"[u, ~, q~] _> 0, a minimum of the functional J[u] exists in the space Y. 

B. If a minimum of the functional exists and, moreover, the functional J[u] is strictly convex, this 
minimum is unique in the space Y. 

The proof requires the construction of a solution of boundary-value problem (2.1) in the form of a 
weakly converging minimizing sequence. A version of the construction of such a solution for thin plates 
is proposed below. 
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3. A M A T H E M A T I C A L  M O D E L  OF THE T H E O R Y  OF PLATES 

The sufficient conditions for existence and uniqueness• The Lagrange functional (2.2) of the variational 
formulation of boundary-value problem (2.1) is considered in a reflexive Banach space of the generalized 
functions 

{ } w =  u ~ w~(Xo) X W~(Xo) × W~(Xo): Vo ° Vo×udVo= ~ 

Here W~(Xo) × W~(Xo) x W~(Xo) is a Sobolev space with norm 

(3.1) 

1 1 2 2 2 OUi 
Ilulltw,,<Xo)13 = ;~(Ul + U 2 + u 3 ) a g  0 + d V  0 

i, -1 

o~ and [~ are specified constant vectors, and I is the characteristic dimension of the middle surface of 
the plate. 

We take the following sequence of vector functions as the minimizing functions for the functionalJ[u] 

~ ( ~ . 3 )  '- • lfi(i)(ro,) ' ( . r~ ) ( i - l )N (t 1)t - 1 
u m = m e  N ;  l i _ 1  r o 3 ®  . . .  O r ® 3  ' ( 3 .2 )  

i=l i l l  

I(U -1>) 
Here (i e N) is a specified basis of tensors of increasing valency, the superscripts (i - 1) 

and (i) indicate the valency of the tensor functions and N is the set of natural numbers• 
In this case the Lagrange functional (2•2) for the function u m and its first variation can be represented 

in the form 

J[Um] = 

I m ] m 
I ~1°- Z pti) !ft(i) dECo + Z o(2i?+!f~ti)dlo 

OX~o i=l  s i=l  

~J[Um] = 
m 

"Q22 - V o ,  I Z 33 ^(i+l) 

~oi= 1 
^(i+l) ) .  8a(uSX0 + • Q21 _ p(i)  i 

m 

+ ~ Z (n .  0~il + l)_ 0~i]+). Sft(i)dl; 
si=l 

h (i) h ( ~ ) ( i _  (r03~(i- 1, (~.3)(i- 1, 
00= IVodC P = I f ® ®  '>a~+-~+® -,,'3-® k, lJ+ 

-h -h 

(3.3) 

3 ~ ~ A(i+ l) 
o 3 = 3 0 . 0 ,  V o ,  Or ~2~ 

o* 

, +( r ,0 /"" ,  
0~÷"= I °® -7- ~ '  

-h 

h 

-h 
h 

Q21 = 0 + ® 

-h 

The boundary values of the corresponding quantities on the upper and lower bases of the plate are 
denoted by plus and minus subscripts, ~]/+1) = V0 * ® fi(gl and ~+1) = 3o 3 ® fi(i) are generalized 
coordinates, Q(i+l) and Q(i+l) are generalized forces, conjugate to them, s is the closed contour of the 21 22 
middle surface of the plate and dlo is an element of arc. 

From the conditions for a minimum of the functional (3.3) in the space Wwe obtain the boundary- 
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value problem, formulated in terms of the generalized coordinates and generalized forces introduced 

v, . ,y,+ l) - 3; . (&+ ‘) + i;“’ = 0; [n . &,+ ‘jax’, = g’J+; i = 1, . . . . m (3.4) 

The conditions for convexity of the functional (3.3) follow from conditions (2.3) and can be represented 
in the form 

I 
*(i+l)i+l 

[SO21 ’ &$+‘) + 8Q22 -(i+l)i+l A(i+l)Ia;>o 
. 6e, 

air, 

The results obtained enable us to formulate the following theorem on the sufficient local conditions 
for the existence and uniqueness of a weak minimum of the Lagrange functional. 

Theorem 2. A. Suppose 
(1) in a weakly closed subspace W of the reflexive Banach space [ W:(XO)]3 the Lagrange functional 

J[u] is twice continuously Gateaux differentiable; 
(2) in the space of the functions W a unique solution u1 of the linear boundary-value problem of the 

theory of elasticity, corresponding to (2.1), exists; 
(3) for the tensors 6* and 6’ (a* = 6 -B’, 6’ is the stress tensor of the linear theory of elasticity) the 

following condition is satisfied 

I a*(u) . . (V, 63 #pfdV, I 
x0 

I (e’(U) .. Pa @ (p)TdVO) for all u, cp E W 

x0 

(4) the coefficients 

of the functions 

belong to the space &(Xh)(j E N, i = 1, 2, 3); 
(5) the following sufficient conditions for the convexity of the Lagrange functional are satisfied 

A,, 4, . . ..&>O forall cp#O, Vue W 

I (V, .66). GudV, > 0 for all u E W 
x0 

Then a minimum of the functional J[u] exists in the space of the functions W. 
B. Suppose the above-mentioned conditions are satisfied and the functional J[u] is strictly convex. 
Then, the minimum of the functional is unique in the space W. 

Proof. A. Existence. We will take as the minimizing functions the sequence of functions u, E W, 
for which 
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J[um] ~ i n f  J [ u ]  as  m ---> oo 
u~W 

For the functions of the external force loads, for which conditions 4 are satisfied, the sequence u m 
is weakly convergent as m --+ oo to the function 

~' (rO3,~( i - l ) i_ l^( i ) ,  " . 

Z ( T )  • u L'o,, 
i = l  

in the space W [5]. 
It follows from the condition for the weak closure of W in the space [WI(X0)] 3 that the boundary 

element u of the sequence Um belongs to W. 
Satisfaction of condition 3 of the theorem for the tensors d*, dt ensures continuity of the first Gfiteaux 

differential of the functional J[u]. From these conditions and the conditions of convexity of the Lagrange 
functional, there follows the semi-continuity from below of J[u], and the following inequality [4] is 
satisfied 

J[fi] _< limJ[um] 

Hence J[fi] = inf J [um]  , and the function u realises a minimum of the functional J[u] in the space 
W. um~ W 

B. Uniqueness. The strict convexity of the functional is ensured by the satisfaction of conditions 5. 
Since a minimum of J[u] exists, this minimum is unique. 

If follows from the use of the variational formulation of problem (2.1) that the conditions of the 
theorem are sufficient for the existence and uniqueness of a weak solution of the boundary-value 
problem. 

The results obtained here can be used, for example, to formulate and solve corresponding extremal 
problems of the non-linear theory of elasticity for thin plates and shells [6]. 
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and Education of the Ukraine. 
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